
OBJECT-ORIENTED
PHP

C o n c e p t s , T e c h n i q u e s ,
a n d C o d e

by Peter Lavin

San Francisco

®

OOPHP_02.book Page iii Friday, May 5, 2006 2:25 PM

8
U S I N G T H E P A G E N A V I G A T O R

C L A S S

In this chapter we’ll use the PageNavigator
class to step through a directory of images

reduced on the fly using the ThumbnailImage class. We’ll
use all three of the classes you have developed so far:

� The DirectoryItems class stores a list of filenames of images.

� The ThumbnailImage class reduces the dimensions of each image.

� The PageNavigator class steps through these images in an orderly fashion.

We’ll also look at how to use CSS classes to adjust the appearance of
the page navigator; this will greatly improve the reusability of the class.
(This isn’t directly related to object-oriented programming [OOP], but if
a class’s appearance cannot blend with various different designs, then its
usefulness—and reusability—is greatly compromised. A web development
language should integrate well with other web technologies.)

OOPHP_02.book Page 57 Friday, May 5, 2006 2:25 PM

From Object-Oriented PHP
No Starch Press, Copyright © 2006 by Peter Lavin

58 Chapter 8

DirectoryItems Change

Fortunately, because the list of images in the DirectoryItems class is an array,
you can use the ready-made PHP function to return a portion of an array—
array_slice. All you need to do is wrap this function inside a method. Here is
the additional method you require:

public function getFileArraySlice($start, $numberitems){
 return array_slice($this->filearray, $start, $numberitems);
}

The $start variable passed to this method performs the same function
as the start variable in the Google query string discussed in Chapter 7. The
$numberitems variable sets the number of items you wish to display per page.
In a way, the entire PageNavigator class is an answer to the question, “How can
you pass values to the getArraySlice method so that you can step through the
list of images in an orderly fashion?”

CSS and Reusability

No matter how reusable an object is, it won’t be reused if it can’t be adapted
to fit to a variety of page designs. Unlike the DirectoryItems class, which does
its work on the server, the navigator is client-side HTML—it is a series of
enabled or disabled hyperlinks. It’s important to control the page navigator’s
appearance, because it’s a component of a web page. Figure 8-1 shows that
page navigator again.

Figure 8-1: The page navigator

Recall that in order to control the navigator’s appearance, you wrapped
it in a div tag and set the class attribute of the div tag to navigator. One way to
display this component is to shrink the font by setting the font-size property
to smaller and to use the text-align property to center the text. Here’s how
the CSS code to produce that effect might look:

div.navigator{
 font-size:smaller;
 padding:5px;
 text-align:center;
}

This CSS code will ensure that the navigator is centered and that the font
size of its buttons is smaller than the surrounding text.

OOPHP_02.book Page 58 Friday, May 5, 2006 2:25 PM

From Object-Oriented PHP
No Starch Press, Copyright © 2006 by Peter Lavin

Using the PageNav igator Class 59

The div tag of the class, totalpagesdisplay, manipulates the appearance of
the total page count in the following way:

div.totalpagesdisplay{
�font-style:italic;
�font-size:8pt;

 text-align:center;
�padding-top:15px;

}

A different � font style and � size are appropriate for displaying the
current page and the total page count (page 3 of 6, as shown in Figure 8-1).
Increased � padding at the top separates the page number display from the
navigator proper, which improves readability.

You’ll make the anchor tags within your navigator distinctive by assign-
ing style characteristics to them. Because the inactive spans will share some
of those characteristics, you can define them here as well. Those shared
properties might look something like the following:

.navigator a, span.inactive{
 margin-left:0px;
 border-top:1px solid �#999999;
 border-left:1px solid �#999999;
 border-right:1px solid �#000000;
 border-bottom:1px solid �#000000;
 padding: 0px 5px 2px 5px;
}

Using � a lighter color for the top and left borders and then � a darker
color for the bottom and right borders outlines the links and creates the
illusion of depth.

Assign properties to the anchor pseudo-classes in order to override the
default behavior—they should be different from other anchors on this page:

.navigator �a:link, .navigator �a:visited,
 .navigator �a:hover,.navigator �a:active{
 color: #3300CC;
 background-color: #FAEBF7;
 text-decoration: none;
}

Because these hyperlinks look like buttons, it makes sense to assign the
same characteristics to each of the different states represented by � the
pseudo-classes: link, visited, hover, and active.

Finally, you differentiate inactive links from active ones by changing the
background and the font style. For example, in Figure 8-1, because page 3 is
the current page, it is disabled and has a gray background and italic font style.

OOPHP_02.book Page 59 Friday, May 5, 2006 2:25 PM

From Object-Oriented PHP
No Starch Press, Copyright © 2006 by Peter Lavin

60 Chapter 8

span.inactive{
 background-color :#EEEEEE;
 font-style:italic;
}

You can, of course, style your own navigator much differently, using
different CSS styles and, really, that’s the whole point.

Paging with Class

In Chapter 6, we created a web page to loop through a directory of images
and display a thumbnail of each image. We’re going to do the same thing
here, but this time we’ll incorporate the page navigator in order to display
a limited number of images per page.

The very first thing you need to do is include the classes you’ll be using.
This is done with two require statements:

require 'PageNavigator.php';
require 'DirectoryItems.php';

The PERPAGE variable defines how many images to display on each page.
Define it as a constant (5), because it is used in a number of different places
on this page and you don’t want to change its value accidentally:

//max per page
define("PERPAGE", 5);

Recall that within the PageNavigator, the variable called $firstparam is
assigned a default value of offset—the name for the first name/value pair of
the query string associated with the URL of each hyperlink in the navigator.
Each page needs to retrieve the offset value in order to determine which
group of images to display:

//name of first parameter in query string
define(�"OFFSET", "offset");
/*get query string - name should be same as first parameter name
passed to the page navigator class*/
$offset = @$_GET[OFFSET];

Like PERPAGE, � OFFSET is defined as a constant because you do not want
its value to change. You want to ensure that the variable you’re requesting
matches the variable passed into this page by the navigator.

You also want the flexibility to open this page even when no query string
has been passed. For this reason, you should check the value of $offset:

//check variable
if(!isset($offset)){
 �$totaloffset = 0;

OOPHP_02.book Page 60 Friday, May 5, 2006 2:25 PM

From Object-Oriented PHP
No Starch Press, Copyright © 2006 by Peter Lavin

Using the PageNav igator Class 61

}
else{
 //then calculate offset
 $totaloffset = $offset * �PERPAGE;
}

If no query string is passed into the page, you want to begin displaying
images at the beginning of your list, so you set � $totaloffset to 0. If $offset
does have a value, multiplying it by � the PERPAGE value calculates the start
position within the array of image filenames.

The name of the directory you want to use is assigned to the variable
$directory:

$directory = "graphics";
$di = new DirectoryItems($directory);

Listing 8-1: Hard-coded directory name

Because you want to display the directory of images in the graphics
directory, pass the value graphics to the constructor of the DirectoryItems
class.

The imagesOnly method filters out all non-images, and the method
naturalCaseInsensitiveOrder ignores case and orders numerically where
appropriate.

$di->imagesOnly();
$di->naturalCaseInsensitiveOrder();

In Chapter 6, when you displayed all the thumbnails on one page, you
retrieved the entire list of filenames from the DirectoryItems class instance.
Since the page navigator controls the starting position and since you can
retrieve a slice of the array, you need only retrieve a specific number of items
here. Do this by passing the getArraySlice method a start position and the
number of items you wish to display.

//get portion of array
$filearray = $di->getFileArraySlice($totaloffset, PERPAGE);

Displaying an Array Slice

You retrieve each filename and pass it to the getthumb.php file so it can serve
as the file source for an img tag. You don’t need to make any changes to
the version of the getthumb.php file you used in Chapter 6—it includes the
ThumbnailImage class and uses it to create a reduced image.

The code to loop through the thumbnail images hasn’t changed from
Chapter 6 either. For ease of reference, it’s reproduced in Listing 8-2.

OOPHP_02.book Page 61 Friday, May 5, 2006 2:25 PM

From Object-Oriented PHP
No Starch Press, Copyright © 2006 by Peter Lavin

62 Chapter 8

echo "<div style=\"text-align:center;\">";
echo "Click the file name to view full-sized version.
";
$path = "";
//specify size of thumbnail
$size = 100;
foreach (�$filearray as $key => $value){
 $path = "$directory/".$key;
 /*errors in getthumb or in class will result in broken links
 - error will not display*/
 echo "<img src=\"getthumb.php?path=$path&size=$size\" ".
 "style=\"border:1px solid black;margin-top:20px;\" ".
 "alt= \"$value\" />
\n";
 echo "";
 echo "Title: $value
\n";
}
echo "</div>
";

Listing 8-2: Code to loop through thumbnail images

This code differs from the code in Chapter 6 only in that � the $filearray
variable that contains the image filenames is the portion of the total array
retrieved by the getArraySlice method and not all the filenames.

Creating the PageNavigator Object

In order to create the page navigator, you need the current page name and
also the total number of image files; the global $_SERVER array supplies the
name of the current page and getCount the total number of images.

$pagename = basename($_SERVER["PHP_SELF"]);
$totalcount = $di->getCount();

You only need to create the navigator if there is more than one page, so
calculate that number first, as shown in the code in Listing 8-3.

$numpages = ceil($totalcount/PERPAGE);
//create if needed
if($numpages > 1){
 //create navigator
 $nav = new PageNavigator(�$pagename, $totalcount, PERPAGE, $totaloffset);
 //is the default but make explicit
 �$nav->setFirstParamName(OFFSET);
 echo �$nav->getNavigator();
}

Listing 8-3: Creating the navigator if there’s more than one page

OOPHP_02.book Page 62 Friday, May 5, 2006 2:25 PM

From Object-Oriented PHP
No Starch Press, Copyright © 2006 by Peter Lavin

Using the PageNav igator Class 63

When constructing the PageNavigator instance, you pass it � the four
required parameters and let the two additional parameters—$maxpagesshown
and $params—default to 4 and an empty string, respectively. This means that
the navigator will show links to a maximum of four pages and that there are
no additional name/value pairs for the query string. (As promised in Chap-
ter 7, you’ll learn more about $params in Chapter 9. However, you may already
have surmised that this variable can be used to replace the hard-coded
directory name given in Listing 8-1.)

You do not need to set � the first parameter name; it has a default value
of offset. However, by setting the name here, you make it clear that this is the
name of the one required name/value pair, and that it can be changed if
desired.

Finally, the HTML code that makes up � the navigator is returned and
displayed in the web page.

Where to Go from Here

Using the PageNavigator class solves two problems: it alleviates the demand on
server resources and it improves the aesthetics of the web page display. Only
a limited number of images are displayed at any one time, thus reducing the
demands on the server. Aesthetic requirements are satisfied by reduced web
page length.

As noted on many occasions, the real value of objects is in their reusability.
Through the use of CSS, you’re able to adjust the appearance of the page
navigator to match it to a variety of situations. By using span and div tags,
you can manipulate the look and feel of the navigator so that it blends easily
with any design. The number of items shown on each page and the number
of pages accessible at any one time can be set to any number desired.

We’ve seen that the PageNavigator class’s design is adaptable and that
you can use it to step through an array of images, but what about its use in
other situations? A navigator is much more commonly required with database
queries that return a large number of records. In the next chapter, we’ll
develop a database class and then see how well the PageNavigator class can
handle a large result set. The ability to reuse the navigator class in various
and different circumstances will be a true test of its robustness.

OOPHP_02.book Page 63 Friday, May 5, 2006 2:25 PM

From Object-Oriented PHP
No Starch Press, Copyright © 2006 by Peter Lavin

